Continuity And Differentiability In Mathematics | Mathquery

          Welcome To Mathquery 



     In mathematics continuity and derivability or differentiability plays an important role . So let us discuss it .

Definition Of Continuity Of A Function :-

       Let f be a function defined on an interval [a,b] . We shall now consider the behaviour of f at points of [a,b] .

Continuity At A Point :


 Definition(Continuity At An Internal Point) :


         A function f is said to be continuous at a point c , a<c<b , if 

                    lim f(x) = f(c)
                   x-->c

   In other words , the function is continuous at c , if for each ε>0 , there exists δ>0 such that 

             |f(x) - f(c) | < ε , when |x-c|<δ

Here lim f(x) is called the limit of a function
         x-->c 
i.e. the function exists when x tends to c.

(i)  A function f is said to be continuous from   the left at c if 

               lim f(x) = f(c) 
            x-->c-0
(ii)  Also f is continuity from the right at c if 

                lim  f(x) = f(c)
              x-->c+0

   Clearly a function is continuous at c iff it is continuous from the left as well as from the right .


Definition(Continuity At An End Point):


                   A function f is defined on a closed interval [a,b] is said to be continuous at the end point a if it is continuous from the right at a , i.e.

                  lim f(x) = f(a)
                 x-->a+0

  Also the function is continuous at the end point b of [a,b] if 

               lim f(x) = f(b)
            x-->b-0

   Thus a function f is continuous at a point c if 

(i)  lim f(x) exists  , and 
     x-->c

(ii)  limit equals the value of the function at         x= c.


        Let's discuss about discontinuity of a function .


Example :


      Show that the function defined by 
                               { x sin 1/x , when x≠0
                     f(x) ={
                               {    0 ,   when x= 0

is continuous at x = 0.

Solution :


          Now 

                        lim f(x) = lim (x sin 1/x) = 0
                      x-->0

so that 

                       lim f(x) = f(0) 
                     x-->0

   Hence f is continuous at x = 0 .  (Proved)

Discontinuous Function :


                A function is said to be discontinuous at a point c of its domain if it is not continuous there at c. The point c is then called a point of discontinuity of the function .


                   Now let us discuss about Uniform continuous  of a function in mathematics .


Definition Of Uniform Continuity:


       A function f defined on an interval I is said to be uniformly continuous on I if to each ε>0 there exists a δ>0 such that 

   |f(x₂) - f(x₁)| < ε , for arbitrary points x₁,x₂ of I for which |x₁-x₂|<δ.

Example :


    Prove that f(x) = sin x² is not uniformly continuous on [0,∞[ .

Solution :


      Let ε = 1/2 and δ be any positive number such that for n>π/δ² 

                           |√(nπ/2 ) - √(n+1)π/2| <δ

    Therefore , taking x₁ = √(nπ/2 ) and         x₂= √(n+1 )π/2 , as any two points of the interval [0,∞[.

|f(x₁) - f(x₂)| = | sin nπ/2 - sin (n+1)π/2 | = 1

                                                                         >ε,

          |x₁-x₂| <δ 

Hence f(x) = sin x² is not uniformly continuous on [0,∞[ .

 Differentiability At A Point :


            Let f be a real valued function defined on an interval I = [a,b] ⊂ R . It is said to be derivable at an interior point c (where a<c<b) if 

          lim  f(c+h) - f(c) / h 
          h-->0

 or     lim f(x) - f(c) / x-c  exists .
          x-->c

     The limit in case it exists , is called the Derivative or the Differential Coefficient of the function f at x = c , and is denoted by f'(c) . The limit exists when the left - hand and the right - hand limits exists and are equal .

     lim f(x) - f(c) / x-c 
   x-->c-0

      is called the left - hand Derivative and is denoted by 

           f'(c-0) , f'(c⁻) or Lf'(c) 

While  lim f(x) - f(c) / x-c 
            x-->c+0   

        is called the right - hand Derivative and is denoted by 

         f'(c+0) , f'(c+) or R f'(c) 

Thus , the derivative f'(c) exists when 

            Lf'(c) = Rf'(c) 

Example


         Show that the function f(x) = x² is derivable   on [0,1] .

Solution


            Let x₀ be any point of ]0,1[, then 

   f'(x₀) = lim x²-x₀² / x-x₀ = lim(x+x₀) = 2x₀
              x-->x₀                     x-->x₀

  At the end points , we have 

 f'(1) = lim f(x)-f(0) / x-0 = lim x²/x = lim x =0
          x-->0+0                      x-->0+

f'(1) = lim f(x)-f(1) / x-1 = lim x²-1 / x-1 
          x-->1-0                     x-->1⁻
         = lim (x+1) =2
           x-->1⁻

Thus , the function is derivable in the closed interval [0,1].
Continuity and Differentiability of a function



References :-

(I).
         By Abhijit Debnath.

(II).

       (Dover Books on Mathematics)

Comments

Popular posts from this blog

PFAFFIAN Differential Equations And It's Solutions

Cauchy Riemann Equations For Analytic Function

Complete Integral Of Partial Differential Equations