Existence And Property Of Laplace Transform

Existence And Property Of Laplace transforms :


Existence Of Laplace Transforms:


     In order to discuss the theorem on existence of transform we need the following definition .

Definition :


        A function f(t) is said to be piecewise continuous in a finite range a≤t≤b , if it is possible to divide the range into a finite number of sub-intervals such that f(t) is continuous inside each sub-interval and approaches finite values as t approaches either end of any interval from the interior.

Theorem :


       Let f(t) be a function which is piecewise continuous on every finite interval in the range t≥0 and satisfies 

        |f(t)|≤Me^αt , for all t≥0        .........(1)
   and for some constants α and M . Then the Laplace transform of f(t) exists for all p>α .


Proof :


          Since f(t) is piecewise continuous ,      e⁻ᵖᵗf(t) is integrable over any finite interval on the t-axis , 
          T
i.e     ∫ e⁻ᵖᵗf(t) dt  exists for all T.
         0

    Hence for all T , 
          T                            T
          ∫ |e⁻ᵖᵗf(t)|dt ≤M∫ e⁻ᵖᵗ e^αt dt 
          0                           0

  = M[e^(α-p)Τ -1]/(α-p)

     ≤ M/(p-α) , for p>α 
                   T
Thus   lim ∫ |e⁻ᵖᵗ f(t)| dt ≤ M/(p-α) 
        T-->∞  0
                                                     ∞
          for   p>α which implies ∫ |e⁻ᵖᵗf(t) | dt
                                ∞                  0
exists and hence ∫ e⁻ᵖᵗ f(t) dt exists for p>α,
                               0

 that is L{f(t)} exists for all p>α .

     From now on we shall assume that the functions under discussion satisfy conditions in above theorem so that the Laplace transform exists on a suitable interval .


Linearity Property Of Laplace Transform :


  Theorem :



                             n
              If   f(t) = Σ Cᵢ fᵢ(t) ,
                            i=1

where Cᵢ are constants then 
                      n
       L{f(t)} = Σ Cᵢ L{fᵢ(t)}  .
                     i=1

Proof :


      By definition , we have 
                     ∞       n
     L{f(t)} = ∫ e⁻ᵖᵗ Σ Cᵢ fᵢ(t) dt 
                    0       i=1

                    ∞
                = ∫ e⁻ᵖᵗ[C₁f₁(t)+ C₂f₂(t)+....+Cₙfₙ(t)]dt
                   0
               ∞                           ∞
        = C₁∫ e⁻ᵖᵗ f₁(t) dt + C₂∫ e⁻ᵖᵗ f₂(t)dt
               0                            0
                                            ∞
                         + ..........+Cₙ∫ e⁻ᵖᵗ fₙ(t) dt
                                            0

          = C₁L{f₁(t)} + C₂L{f₂(t)}+....+CₙL{fₙ(t)}
              n
          =  Σ Cᵢ L{fᵢ(t)}
             i=1

Example :


             Find the transform of function 

      f(t)  = 3 sin4t - 2 cos5t .

Solution :


     Applying the above theorem , we have 

L{f(t)| = 3L{sin 4t} - 2L {cos 5t}

             = 3 . 4/p²+16  -  2.p/p²+25 
by Laplace function (v) .

            =  12/p²+16  - 2p/p²+25 .

  Which is the required transformation .






Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations