Leibnitz's Rule Statement And It's Proof

        WELCOME TO MATHEMATICS
      

     In this mathematics session I shall prove that , under suitable conditions, ' the derivative of the integral and the integral of the derivative are equal' , and consequently , 'the two repeated integrals are equal for continuous functions'.
        

Leibnitz's Rule In Mathematics:


               If f is defined and continuous on the rectangle R = [a,b;c,d] , and if 

  (i)  fₓ(x,y) exists and is continuous on the rectangle R , and 
                    d
  (ii) g(x) = ∫ f(x,y) dy , for x∈ [a,b]
                    c
then g is differentiable on  [a,b]and 
                          d
             g'(x) = ∫ fₓ(x,y) dy 
                         c
                       d                    d
i.e.,      d/dx {∫ f(x,y) dy }=∫ ∂f(x,y)/∂x dy
                      c                    c


 Proof Of Leibnitz's Rule In Mathematics :


           Since fₓ (∂f/∂x) exists on R , therefore,  for each y∈ [c,d] , and each h≠ 0 , it follows by the Lagrange's Mean Value Theorem , that 

      f(x+h , y) - f(x,y) = h fₓ(x+θh , y),

                                      for some 0<θ<1

         Now fₓ being continuous is integrable on [c,d] for each x∈ [a,b] , therefore g(x) is well defined function on [a,b].
                                          d
    g(x+h) - g(x) /h = 1/h ∫ {f(x+h ,y) - f(x,y)}dy
                                         c
                                 d
                             = ∫ fₓ(x+θh ,y) dy , 0<θ<1
                                c                   .......(1)

    Let ε>0 be given . Then by continuity and uniform continuity of fₓ on R , ∃ δ>0 , such that if (x,y) ,(x',y') ∈ R with 

        |x - x'| <δ , |y - y'| <δ , then 

          |fₓ(x,y) - fₓ(x',y')| <ε/(d-c)   .........(2)

From equations (1) and (2) , we obtain 
                                      d
   | g(x+h) - g(x) / h - ∫ fₓ(x,y) dy |
                                     c
                       d
                   ≤ ∫ |fₓ(x+θh , y) - fₓ(x,y)| dy
                      c

                   <  ε(d-c)/ (d-c) = ε , 0<|h|<δ
                                                         d
Here g'(x) = lim g(x+h) - g(x) /h ∫fₓ(x,y) dy
                     h-->0                          c

                                                   (Proved)


To understand this rule we have to solve an example , so let us take an example .

Example Of Leibnitz's Rule In Mathematics :


        Show that 
         π/2
         ∫ log(1-x²sin²θ) dθ 
         0

               = π log(1+√(1-x²) - π log 2 , if |x|<1

Proof :


       The function log (1-x² sin²θ) is well defined in the rectangle [-1,1;0,π/2] and satisfies the conditions of the Leibnitz's  rule .                  π/2
      Let     g(x) = ∫ log (1-x² sin²θ) dθ , |x|<1
                           0                      ..........(1)

     By differentiating under the integral sign , w.r.t. x , we get 
             π/2
  g'(x) = ∫ -2x sin² θ dθ/(1-x² sin²θ) 
             0
       
                   π/2
         = 2/x ∫ (1-x²sin²θ -1) dθ /(1-x²sin²θ) dθ
                  0                                        x≠ 0
                         π/2
        = π/x -2/x ∫ dθ/(1-x² sin²θ) , put cot θ = 1
                         0
                          ∞
       = π/x - 2/x ∫ dt /(1+t²-x²)
                         0
                                                              ∞
       = π/x - 2/x√(1-x²) tan⁻¹ t/√(1-x²) ]
                                                              0

       = π/x - π/x√(1-x²)
Integrating w.r.t. x , we obtain 

    g(x) = π log x - π log {1-√(1-x² ) / x} + c

                   where c is an arbitrary constant 

           = π log {x²/(1-√(1-x² )} + c

           = π log {x²(1+√(1-x² ) / 1-(1-x²)} + c

           =  π log (1+√(1-x²)) + c 

But g(0) = 0 , by equation(1) , therefore 

                         c = -π log 2

Hence , g(x) = π log (1+√(1-x² ) - π log 2,

                                for     |x| < 1 

                                                 (Proved)


About The Scientists:


        Gottfried Wilhelm Leibniz was a prominent German polymath and one of the most important logicians, mathematicians and natural philosophers of the Enlightenment.Readmore
           
     



Comments

Popular posts from this blog

Derivation Of Composite Trapezoidal Rule

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations