Lioville's Theorem In Complex Analysis | Mathquery

Lioville's Theorem:-


Statement :


      If a function f(z) is analytic for all limit values of z and is bounded then f(z) is constant .

Proof


      Let z₁ , z₂ be any two point of the z-plane the contour C to be a large circle of radius R centred at origin and containing the point z₁ , z₂ . Therefore |r₁|<R and |z₂|<R . Also as f(z) is bounded therefore ∃ a positive M such that f|(z)|≤M for all z.

     By Cauchy's Integral formula we have 

     f(z₁) = 1/2πi ∫ f(z) dz /z-z₁
                          c

     f(z₂) = 1/2πi ∫ f(z) dz /z-z₂
                          c

∴ f(z₁) - f(z₂) = 1/2πi ∫ f(z) dz /z-z₁ 
                                   c

                       - 1/2πi ∫ f(z) dz /z-z₂ 
                                   c

                 = 1/2πi ∫ (z₁-z₂) f(z) dz /(z-z₁)(z-z₂)
                              c
|f(z₁)-f(z₂)|

             =   |1/2πi ∫(z₁-z₂)f(z) dz /(z-z₁)(z-z₂)|
                              c

 ≤  |1/2πi|∫|z₁-z₂||f(z)||dz|/|z-z₁||z-z₂|
                  c

≤ 1/2π |z₁-z₂|M ∫ |dz|/(|z|-|z₁|)(|z|-|z₂|)
                             c

                                      as |f(z)|<M

= 1/2π |z₁-z₂|M ∫dz  /(R-|z₁|)(R-|z₂|)
                             c
                                         as |z|=R

Again |z|=R ⇒z= R exp(iθ)

∴  dz = R exp(iθ). i .dθ

∴ |dz| = R dθ
                                               2π
             = 1/2π  |z₁-z₂|M .R ∫ dθ
                                               0

             /  R² (1-|z₁|/R)(1-|z₂|/R)

            = 1/2π |z₁-z₂| M .2π
                                                       --->0 as R-->∞
            /  R(1-|z₁|/R)(1-|z₂|/R)

∴  f(z₁) - f(z₂) = 0 or f(z₁) = f(z₂)

       As z₁ and z₂ are arbitrary it follows that f(z) is constant .


About The Scientist :-

Liouville's Theorem

   
       Joseph  Liouville  (24 March 1809 – 8 September 1882)was a French mathematician.For more

            Please Leave A Comment

Comments

Popular posts from this blog

Accuracy Of Numbers

PFAFFIAN Differential Equations And It's Solutions

Complete Integral Of Partial Differential Equations